

Unit Outline (Higher Education)

Institute / School:	Institute of Innovation, Science & Sustainability			
Unit Title:	ROCK MECHANICS APPLICATIONS			
Unit ID:	ENGIN2503			
Credit Points:	15.00			
Prerequisite(s):	Nil			
Co-requisite(s):	Nil			
Exclusion(s):	(ENMIN3040 and ENMIN5160)			
ASCED:	030909			
Description of the Unit:				

This unit introduces elasticity, rock mechanics and their applications in rock structure designs, rock support designs and ground control in surface and underground mines.

Grade Scheme: Graded (HD, D, C, P, MF, F, XF)

Work Experience:

No work experience: Student is not undertaking work experience in industry.

Placement Component: No

Supplementary Assessment: Yes

Where supplementary assessment is available a student must have failed overall in the Unit but gained a final mark of 45 per cent or above, has completed all major assessment tasks (including all sub-components where a task has multiple parts) as specified in the Unit Description and is not eligible for any other form of supplementary assessment

Course Level:

Level of Unit in Course	AQF Level of Course					
	5	6	7	8	9	10
Introductory						
Intermediate			~			
Advanced						

Learning Outcomes:

Knowledge:

- K1. Understand the principles involved in theory of elasticity
- **K2.** Recognise rock as a structural material and analyse the applicability of classical elasticity principles to rock structures
- **K3.** Interpret rockmass classification depending on its structural quality, in-situ stress field and groundwater regime
- K4. Analyse stress re-distributions due to the excavation processes
- K5. Assess support systems appropriate to a particular excavation

Skills:

- **S1.** Investigate rock stress and strain analysis in mining
- **S2.** Investigate ground control analysis, select appropriate support systems; and refine the design processes
- S3. Apply knowledge in rock mechanics for rock structure designs in surface and underground mines
- **S4.** Apply advanced mining design software to design and analysis of typical rock structures used in mining

Application of knowledge and skills:

- **A1.** Analyse rock stress in mining environment
- **A2.** Analyse rock/ground deformation in mining environment
- A3. Design rock structures used in mining, observing safety and economic requirements

Unit Content:

Topics may include:

- Overview of Theory of Elasticity
- Rock as a structure
- Strength & Deformation of rock
- In-situ stresses
- Methods of Excavation Analysis
- Stresses around excavations
- Stability evaluation of rock structures
- Evaluation of support requirements

Learning Task and Assessment:

Learning Outcomes Assessed	Assessment Tasks	Assessment Type	Weighting
K1-K4, S1-S2 and A1-A2	A selection of tutorials will be assessed though out the unit.	Assessed tutorials.	20-30%
S3-S4 and A3	A laboratory or field based practical exercise will be undertaken and assessed.	A technical/project/lab report.	20-30%
K1-K5, S1-S4 and A1-A3	Any or all material covered in the unit will be examinable.	Test(s)	40-60%

Alignment to the Minimum Co-Operative Standards (MiCS)

The Minimum Co-Operative Standards (MiCS) are an integral part of the Co-Operative University Model. Seven criteria inform the MiCS alignment at a Course level. Although Units must undertake MiCS mapping, there is NO expectation that Units will meet all seven criteria. The criteria are as follows:

- 1. Co-design with industry and students
- 2. Co-develop with industry and students
- 3. Co-deliver with industry
- 4. FedTASK alignment
- 5. Workplace learning and career preparation
- 6. Authentic assessment
- 7. Industry-link/Industry facing experience

MiCS Course level reporting highlights how each Course embraces the principles and practices associated with the Co-Operative Model. Evidence of Course alignment with the MiCS, can be captured in the Course Modification Form.

MICS Mapping has been undertaken for this Unit No

Date:

Adopted Reference Style:

Other (IEEE: Refer to the library website for more information)

Refer to the library website for more information

Fed Cite - referencing tool